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Abstract—High operating speeds and use of aggressive fabrica-
tion technologies necessitate validation of mixed-signal electronic
systems at every stage of top-down design: behavioral to netlist
to physical design to silicon. At each step, design validation
establishes the equivalence of lower level design descriptions
against their higher level specifications. Prior research has
leveraged state reachability analysis, nonconvex optimization, or
performance specifications in order to generate tests. In contrast,
we reformulate the systems under validation as a Markov decision
process and examine the use of reinforcement-learning to provide
a globally convergent solution, a means of “storing” the valuable
information created during stimulus generation, and low-cost
iterated generation. The integration of the proposed design
validation methodology with deep-Q learning software and the
suite of Cadence simulation tools is presented, validation results
for selected design bugs in representative designs are analyzed,
and the quality and efficiency of the proposed design validation
methodology is discussed.

I. INTRODUCTION

In hierarchical system design (SoCs, SoPs), models for
mixed-signal components (e.g. regulators, data converters, I/O,
RF ) are described at the behavioral level (Simulink or MAT-
LAB) with the complete system described as an interconnec-
tion of these models. The design strategy is typically top-down
with bottom-up verification of synthesized netlists and physical
layout. The design is incrementally advanced and verified with
the intent of ensuring design correctness through each iteration
of the design process from high level design specification to
physical layout to silicon. This prevents expensive correction
of design bugs that percolate from early stages of the design
process to later steps including fabrication of silicon. To
facilitate rapid turnaround design, it is necessary to verify
behavioral equivalence between a higher level specification
of the design (e.g. AHDL) and its lower level implementation
(e.g. netlist) as early as possible.

While the analog specifications of modules at two different
levels of the design can be checked for equivalence, such a
check does not guarantee behavioral equivalence across the
entire space of input stimuli because the set of specifications
used to check for equivalence may itself be incomplete [3], [4].
For similar reasons, formal methods for design equivalence
checking may fail because designer inserted assertions may
not cover all input-output behaviors and are generally myopic
and constrained to specific input conditions.

II. PRIOR WORK

The use of rapidly exploring random trees (RRT) for analog
circuit test generation was presented in [5], [6]. The idea
was to quickly explore reachable points in the state space
of the analog circuit for verification purposes. In [7], an
efficient discretized state space guided test stimulus generation
approach is proposed with the goal of equivalence property
checking. The methodology combines formal methods with
circuit simulation techniques. In a similar vein, the equivalence
between a behavioral model and its transistor level design
over a highly likely input stimulus space is discussed in [8].
The discrepancy between the two design descriptions over the
space of possible input stimuli is maximized to detect design
errors. The work of [9]–[11] was among the first to combine
formal verification methods with simulation driven techniques
to explore the limits to which analog design specifications
can be stressed, but assumes tests that are derived from man-
ually crafted specifications. Central challenges going forward
include eliminating up-front assumptions of input distribution
(i.e. “kinds of input”) and assumptions of completeness of any
set of provided specifications.

III. MOTIVATION

The purpose of this work is to present a new reinforcement
learning (RL) driven test generation and anomaly-model gen-
eration algorithm that does not require any a-priori knowledge
about: stimuli to be used for design verification/validation,
the device specifications, or properties to be verified. Ad-
ditionally, the RL techniques used have been shown to be
convergent upon the global optimum under certain conditions
and internally contain a useful distillation of all previous
information (they have memory) and so can be reused and
retrained many times and in many contexts at higher efficiency
than optimization alone [12].

In Section V, we briefly review the subject of RL and its
relationship to other machine learning (ML) techniques. In
Section VI-A, we present our formulation of the analog and
mixed-signal (AMS) system validation problem as a Markov
decision process (MDP). In Section VI-B, we illustrate the di-
rect applicability of contemporary RL techniques to validation
and explore the possible benefits over existing techniques. In
Section VII, we detail our implementation of deep Q-learning
and discuss our experimental setups. We present experimental
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Fig. 1. Methodology overview

results and provide a summary analysis before concluding the
paper in Section VIII.

IV. OVERVIEW OF VALIDATION METHODOLOGY

For design validation it is necessary to attempt to excite
differences between the high level design and its low level
design description. We propose a directed stochastic test
generation approach based on reinforcement learning which
excites both the high level model as well as its low level
description with the same stimulus while observing the dif-
ference (or error) signal between the two. While the focus of
this paper is on test stimulus optimization, the end application
is in behavior learning. This involves several test generation
runs. After each run, the high (or low) level models are
augmented with learning kernels in such a way that the
error between them is minimized. After model augmentation,
another round of test generation and model augmentation
is performed (without undoing the augmentation performed
earlier). The learning kernels in each round of augmentation
are arranged in a “boosting” fashion [13]. This process is
repeated until no further differential behaviors can be excited
by the test stimulus generator. Figure 1 describes the above
process. In the past, sparse wiener networks have been used as
learning kernels [14]; recurrent neural nets can also be used as
earning kernels. The ensemble of kernels collectively describes
behaviors induced by logical and electrical bugs in the design
(electrical bugs are harder to model in simulation but can
be excited in fabricated silicon). The behaviors induced by
multiple design bugs may be characterized in this manner and
passed to the circuit designer for further analysis.

V. REVIEW OF MACHINE- AND
REINFORCEMENT-LEARNING

“Machine Learning” refers broadly to the study of statistical
methods that leverage the power of computing hardware to
predict attributes of future observations by making inferences
from past observations, the “learner’s” ability to do so is
predicated on exposing the learner to a volume of historical
data which is representative of future observations. The cat-
egories of tools that comprise machine learning are divided
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Fig. 2. Validation stimulus built as a succession of actions taken, each leading
the system into a different state, Si

into two main classes: those that are “supervised” and those
that are “unsupervised.” A supervised approach refers to the
requirement for human intervention in the preparation of
training data. By contrast, “Unsupervised” algorithms do not
require human intervention. Classically, unsupervised tech-
niques consist mainly of data clustering algorithms.

A. Reinforcement Learning

In the early 1990s, work on a third class of machine learning
algorithms called “reinforcement learning” began to circulate.
[15]. In RL, rather than require human intervention on the very
granular datum-to-datum scale, one provides a means for the
machine to evaluate its own performance and guide its own
learning. The full potential of RL became evident with the
advancement of parallel computation tools, and the work of
Minh et. al. ( [16]) wherein a RL learner was trained to play the
Atari video game console with skill surpassing that of humans
put RL squarely into the spotlight. Google’s DeepMind team
has recently enraptured the public once again with their
exhibition of a self-taught RL player which has handedly taken
the crown from the reigning champion, Stockfish [17]. The
overarching goal of RL is for a machine to learn to be “good”
at a task in a self-directed fashion through feedback about
its performance received via the reward signal (discussed in
Section VI-B).

B. Basics of (Deep/Double) Q-Learning

Q-Learning is so named because it centers around the
approximation of a “quality” function,

qi+1 = Q(si, ai) (1)

which predicts the “quality” resulting from taking a certain
action, ai, given that the system is in state si. It requires that
every intermediate action, ai, receive a corresponding reward
signal, ri. In this work, circuit state is defined by a vector
of node voltages and branch currents. Individual actions are
defined as ramp inputs to the system which take the inputs
of the circuit under test from an initial value, ai, to ai+1 as
shown in Figure 2. Starting from the state si, the RL takes
an action (choice of input ramp) which will lead the system
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Fig. 3. Example of two circuits combined to create a validation MDP

into state si+1. We also define Q∗, the discounted sum of all
n incremental rewards received during an episode:

Q∗(a0, . . . , an) =

i=n∑
i=0

n∑
i

γiri (2)

where γ is the factor of time-discounting, which takes a value
on the range [0,1] (and is usually close to 1).

The goal of Q-learning is to accurately predict Q at each
step so that optimal actions are selected, resulting in max-
imization of the expectation of Q∗. In [12], the algorithm
is shown to be convergent to a global optimum. In order to
correctly model Q however, one must explore the entire state-
space of the system which can be infeasible even for modestly
sized digital systems. So instead, Q-learning algorithms bal-
ance exploration and exploitation in effort to deliver acceptable
performance in reasonable time.

“Deep Q-learning” is simply an implementation of Q-
learning which leverages a so-called “deep” neural net (one
which has a number of layers in series performing sequential
abstractions from observation space to inference space) to
implement the Q function. Double-Q learning is another vari-
ation in which separate networks are used for action selection
and Q estimation which can avoid systematic bias introduced
by guiding learning with the same network that is doing the
learning.

In this work, we employed DQN algorithms as described
by Minh, et. al. in [16] through open source implementations
provided by OpenAI in their Baselines framework [18] as well
as from the “stable-baselines” package [19].

VI. STIMULUS GENERATION FOR BEHAVIOR DISCOVERY

A. Circuit-pairs as Markov Decision Processes

In this work we formulate the validation of a system as a
Markov decision process (MDP): a state machine which transi-
tions probabilistically as a function of input and state, with the

transition probability functions being stationary (memoryless).
As illustrated in Figure 3, we compose such a system by
exercising two systems in unison and observing their cor-
responding states. So state sets S1 and S2 must contain at
least one node voltage or branch current which corresponds
behaviorally (non-null intersection). The state of the MDP,
s, is then the union of all pairs of states which S1 and S2
have in common, and the action inputs to our MDP map to
a circuit input shared by the systems. Let m represent the
number of pairs of states. Figure 2 illustrates the progression
of a circuit through time conceptualized as as sequence of
state transitions resulting from a particular input sequence. In
some cases where only a subset of circuit states are observable,
previous values of input (up to the system’s memory depth)
can be used as a proxy for unobservable states. In such cases,
a system with memory-depth N can be made to seem Markov
to an observer if the previous N inputs are treated as states.

B. Validation and RL Reward

Reinforcement learning introduces to MDPs the notion of
“reward.” Reward is a measure of the favorability of an
individual transition from one state to another. In reinforce-
ment learning, the algorithm’s goal is to exercise the MDP
environment by carefully manipulating its inputs in a way
that maximizes the expected accumulated reward at the end
of an experimentation period, or “episode.” If we can devise a
reward which aligns itself with our validation goals (to prove
inequivalence, for example), then we can employ reinforce-
ment learning techniques to find stimuli which maximize the
likelihood of reaching our goal.

1) Designing the Reward Function: In each time step of
the learning episode we perform a short transient simulation
composed of many timesteps of its own, and so every RL
timesetp results in 2 × m × k data points. Choice of time
discretization should be made such that observations appear at
most weakly nonlinear within any RL time step. The reward
function, therefore, must accept a 2×m× k matrix as input
and produce a scalar reward.

In validation, we are interested in the distance between the
states of the two systems. There are many distance metrics
which might be suitable in helping produce a scalar reward:
L-2 norm, Manhattan, cosine, cross-correlation, Mahalanobis,
Wasserstein, etc.; analysis of the relative merits of each is an
area of active research and must be assessed on an individual
basis [20]. In this work, we have chosen the L1 norm of
the time-domain difference waveform as the reward metric
for reinforcement learning. In experiment Section VII-A, the
RL receives the reward only when its value surpasses that of
any reward received up to that point in the episode (generation
session); experiments Section VII-B and Section VII-C receive
each reward regardless of history.

VII. EXPERIMENTAL RESULTS

Brief Note on Hyperparameters: Initial prototyping was
performed in Matlab using a Double-Deep-Q architecture
built from scratch. The effort yielded mixed success (Figure
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Fig. 4. Results of initial prototype experimentation illustrating hyperparameter
sensitivity (learning-rate-induced instability)

VF2

VF2*

DDDDDDD

V1

V2

RL Controller

VF1

VF1*

Fig. 5. Block-level schematic of the experimental setup in Section VII-A

4) mostly due to the abundance of hyperparameters in the
algorithm and implementation-dependent subtleties. Because
of our inability to achieve consistently good results, we turned
to OpenAI Baselines, and Stable-Baselines for more robust
implementations [19].

A. Volterra Models in Python

Two pairs of Volterra filters were created in a Python
environment with identical coefficients drawn from a standard
normal distribution. In one set of filters, two coefficients were
chosen for a large binormally-distributed perturbation (+/-
0.2/σ and µ = 0.2/π) and 10 coefficients were chosen for
small perturbations (+/- 0.002/σ and µ = 0.002/π). The
coefficients of each filter were then normalized such that no
coefficient had a magnitude larger than 1. We obscured the
internal states of the filters from the learning algorithm, and
kept the 7 most recent historical inputs as proxy states.

The stimuli were limited to 20 samples in length, corre-
sponding to 20 steps per episode. The learning rate, α was
0.5e-4, the discounting of future value, γ, was 0.99, and the
policy was ε-greedy with ε decaying exponentially from 0.1 to
0.02 over the course of 500k steps. The system was explored
in batches of 32 episodes constituting a session. After each
session, the network (sizes varying from 8 neurons to two
layers of 64 neurons each) was retrained to approximate the
updated Q values from the most recent 50k sessions.
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Fig. 6. Comparison of Time Costs

TABLE I
DQN V. DE: SELECTED STATISTICS

Mean DE generation time 316.4s
Mean DE reward 8458.2

Mean DQN training time 404.1s
Mean DQN evaluation time 0.17s

Mean DQN reward 3347.4

Figure 6 shows a comparative study of q-learning im-
plementation against a differential evolution implementation
provided by the Scipy library.

It can be seen that the DQN stimulus generation algorithm
can repeatedly synthesize stimuli at a fraction of the cost of
DE once it’s trained.

B. Programmable Gain Amplifier in Spectre/OpenAI

Our second experimental platform was built in Pythton 3.5
and Tensorflow 1.5 and utilized the OpenAI Baselines library
[18]. The implementation of DQN was based on [21].

The systems under validation were Cadence Spectre sim-
ulations. Each circuit was implemented in its own netlist,
and instances of the Spectre binary were run in parallel and
interacted with dynamically through our own “circuitgym,”
“pyspectre,” and “libpsf” python libraries [22]–[24]. In this
fashion, the circuits’ inputs are manipulated and short time
step transient simulations are performed.

The system under test is a 2-bit DAC feeding directly into
a programmable gain amplifier with a 2-bit gain control. One
version utilizes a more detailed and less idealized AHDL
model for the amplifier core. Inputs are updated at 333ns
intervals, and transient simulations of 333ns duration occur
between each RL time step. After each time step, Spectre
returns transient waveforms for all the transitional dynamics
that are observable.

We exposed all 102 internal states which the two models
had in common. This meant that the network must have
an input dimension of (102,1). The deep Q-learning model
implemented a discrete action space, and so each full input
vector was assigned a probability of inducing a particular
action. The circuit has 4 discrete input bits, corresponding
to two 2-bit DACs. The interface between the Q-learner and

!

!



RL Agent

VCCS
-

+
V11

V21

VCCS
-

+
V12

V22

2b DAC

2b DAC

2b DAC

2b DAC

Fig. 7. Block-level schematic of the system under validation in Section VII-B

0 500 1000 1500 2000 2500

0

5

10

15

20

Episode Fitness v. Time (Smoothed)

random
DE
DQN

episode number

ep
is

od
e 

re
w

ar
d

Fig. 8. Evolution of rewards from different actors in PGA environment
(Section VII-B)

the circuit was made by considering each full 4-bit vector
to be a discrete action. Thus the output layer of the circuit
required 16 neurons, corresponding to the 16 possible inputs.
The network was configured to have two hidden layers of
64 neurons each; This configuration lead to a total of 11,793
trainable parameters in the neural model.

Three test benches were built for this circuit: a random actor,
an off-the-shelf differential-evolution algorithm (DE) and our
DQN algorithm. In each, a maximum of number of allowed
steps was set to 12,500, corresponding to 2500 episodes, each
of length 5. The results of the random actor exercise over time
are shown in Figure 8.

A more in-depth look at how the off-the-shelf DE algorithm
progresses reveals a pitfall; independent trials of the DE
algorithm, though the DE algorithms may sometimes converge
and terminated very quickly, result in high variance in per-
formance. A majority of the solutions proposed by the DE
algorithm are poorer in performance than that from the DQN

Bug#1 in
LNA ckt.

Fig. 9. Fault-injected LNA

Fig. 10. Buggy model error before and after augmentation. Lighter colors
represent higher-discrepancy observations

algorithm. This is a consequence of the possibility that the
algorithm converges in a local solution. The DQN algorithm
does not suffer from this risk because it has been analytically
demonstrated to be globally optimal in the asymptotic case
[12].

C. LNA Model Augmentation

In order to validate the model augmentation portion of the
framework, we implemented a buggy low-noise amplifier in
Cadence spectre by injecting a 10k-ohm resistor to couple
two nodes which should not be directly bridged. Augmentation
was performed by iteratively creating, training, and injecting
SVM regressors into the bug-free model in order to reduce
the observed behavioral difference. Like experiment Section
VII-B, the experiment was built in Pythton 3.5 and Tensorflow
1.5 and utilized the OpenAI Baselines library [18].

The LNA circuit is shown in Figure 9; lna model dis-
crepancies (buggy v. bug-free), before and after 20 rounds
of augmentation are shown in Figure 10 with light color
indicating observations of high-discrepancy. Figure 11 plots
the evolution of the mean and kurtosis of model discrepancy
over all observations over the course of iterated augmentation,
indicating that not only is overall error reduced, but the number
of spurious, relatively high-error events is also reduced.
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VIII. CONCLUSION

We have presented the details of our state-of-the-art rein-
forcement learning algorithm which serves as the stimulus-
generation subsystem in a design validation framework. We
have designed and conducted several experiments which lever-
age Q-learning to generate a stimulus which is capable of re-
vealing a maximal amount of information about the differences
between two systems. Our work suggests that reinforcement
learning provides a very powerful complement to tools like
differential evolution and Monte Carlo stimulus generation.

While DQN is able to ultimately outperform the other
methods, it comes at the cost of computational time (about
10x more). It however outperforms the optimization solver
from a warm-start by a factor of roughly 1800x, suggesting
that if appreciable restarts are foreseen, the benefits of RL may
outweigh its up-front costs.

Some validation tasks can be accomplished with traditional
specification tests (i.e. two-tone test) while others might re-
quire slightly more entropic stimuli like white noise in order
to excite behaviors of interest. Circuit complexity, situation,
or mission-criticality may mandate running the additional
number of simulations required to train a high-performance
agent to reveal the global solution, something that stochastic
nonconvex optimizers cannot provide. We will continue this
work, looking at broader classes of circuit and varying degrees
of bug magnitude and nature. Additionally, we will explore the
limits of RL’s warm-start advantage.
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